Notes on Bad Engineering Properties of Object-Oriented Languages

notes, papers

This post is a set of notes on Bad Engineering Properties of Object-Oriented Languages” by Luca Cardelli, available at the time of writing from Cardelli’s site.

This post is mostly intended for my own notes. You may not find it useful.

First, Cardelli opens by defining 6 areas in which one can informally evaluate a language’s effectiveness for software engineering.

He then comments on some areas in which “advancements in procedural programming” have created positive changes in those six areas. Of particular note;

Cardelli then lists ways in which Object Oriented languages fail or score poorly on the metrics in question:

Cardelli then states where work is happening and what still needs to be done:

Notes on Semantics of Multiple Inheritance (Cardelli, 1985)

notes, papers

This post comprises of my notes while reading Luca Cardelli’s 1985 Paper, Semantics of Multiple Inheritance. At the time of writing, a copy of this paper was available for free from ScienceDirect.

These notes are semi-structured, and are intended primarily for my own reflection.

Section 1 -

Here’s a statement that excites me:

The aim of this paper is to present a clean semantics of multiple inheritance and to show that, in the context of strongly typed, statically scoped languages, a sound typechecking algorithm exists. Multiple inheritance is also interpreted in a broad sense: instead of being limited to objects, it is extended in a natural way to union types and to higher-order functional types. This constitutes a semantic basis for the unification of functional and object-oriented programming.

Section 2 - Objects as Records

Section 3 - Records

Section 4 - Variants

The beginning of this section refers to a “disjoint sum”, This made sense to me after reading this page on and this explanation of Disjoint Union from Wikipedia. I believe that a ‘disjoint sum’ is just an element in the disjoint union of the two sets in question.

Section 5 - Inheritance Idioms

The first comment in this section is interesting - it shows that inheritance, as defined so far in the paper, is an implication of definitions, and need not be declared explicitly.

There is a paragraph: “The subtype relation only holds on types, and there is no similar relation on objects. Thus we cannot model directly the subobject relation used by, for example, Omega (Attardi, 1981), where we could define the class of gasoline cars as the cars with fuel equal to “gasoline.” This sounds like the author is talking about “dependent types” as used on the wikipedia page for dependent types.

The next paragraph after that introduces a solution by defining a set of fuel types and then defining “gasoline_car” as a subtype of “car”. My gut is that this sort of compile-time-versus-runtime type-checking (and type-definition?) distinction is related, at some level, to the “code versus data” issue that Lisp (partially?) addresses through homoiconicity.

Interesting note, in that “constructor” is “a vague term indicating that, in an implementation, computation can be temporarily suspended thereby avoiding some looping situations”. This makes me wonder; how does object initialization (construction) work in Ruby?

Possibly to be continued

[Note 2018-05-06] The paper has another 7 sections or so, but I put down and temporarily abandoned process back in December of 2017. I decided to publish these notes anyway, again, mostly for my own reflection and reference.

Why Do We Accept Partial Functions?

How to Fix Slow Request Handling With AWS SAM Local

aws, sam

If you are developing AWS Lambda Functions, you will likely use AWS SAM Local for running your functions in a local development environment.

AWS SAM Local is a great tool. However, many users, including myself, run into very slow response times when first using AWS SAM Local, as documented in issue 134. Simlpe functions may be taking more than 6 or even 10 seconds to evaluate.

This is likely for one of two reasons:

  1. You are using a language with compiled-and-compressed code packages like Java’s JAR files.

  2. You have not configured your AWS credentials.

For (A), AWS SAM Local unpacks your compressed code package on every request. That process takes a few seconds, period. There are a few workarounds, which include manually unzipping your .jar and pointing at the unzipped files in your template.yaml’s CodeUri parameter.

However, if you are not using the C# or Java environments and are still experiencing slow requests, you are in (B), and you can solve this problem by configuring your AWS Credentials.

The documentation indicates that you can provide credentials in one of two ways:

  1. Specify AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables

  2. Configuring a profile in ~/.aws/credentials for Linux or MacOs

Nota Bene: When AWS SAM Local’s README refers to ~/.aws/credentials, there is an implication that you are using the AWS CLI v2, not the older v1, which stores information in ~/.aws/profile.

There are two gotchas with this documentation:

  1. While both solutions will speed up execution, specifying the environment variables is noticeably faster. I recommend you skip the AWS CLI configuration and just specify the environment variables.

  2. If you put your credentials in ~/.aws/credentials in a profile, you need to specify --profile <profile_name when you invoke sam for AWS SAM Local.

Note that for basic AWS SAM local operation, you do not need to specify valid AWS credentials - any old value, even the empty string, will do!

Using Google Closure Compiled Code for AWS Lambda Functions

clojurescript, javascript

Recently, I tried to get a development environment set up for developing a single page web application ClojureScript - but with a backend written to run on AWS Lambda functions, also in ClojureScript.

ClojureScript seems to use the Google Closure Compiler for compiling JavaScript. The Google Closure Compiler uses its own module and import/export/require system that is different from Node’s module system.

Because AWS Lambda expects your JS to export the handler functions for the Lambda function using the Node module system, I ended up with a real problem:

How do you require Google Closure-compiled ClojureScript into a node module?

The answer ended up being quite simple. Given that Closure is creating a compiled file with name functions.js, which in turn is exporting a namespace functions.core, you can create a new main.js file in the same directory as the compiled functions.js file with the following content:

var f = require("./functions.js");
module.exports = f.functions.core;

This took me longer than I care to admit to figure out, though that’s probably mostly a function of how little I deal with JavaScript module systems. Since thanks go to Matthew Stump’s post Writing NodeJS Modules in ClojureScript, which had the trick as part of it.